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ABSTRACT

In order to solve a system of coupled Schrédinger equations, four analytical variants
are given, and their range of applicability is discussed. One of these variants is used
in the determination of the Channel Coupling radial wave functions, the Optical Model
wave functions and the regular Coulomb function.

1. INTRODUCTION

The central part of the many problems of quantum mechanics is the solution of
a systemn of coupled Schrdinger equations (e.g. Channel Coupling Theory of
Nuclear Reactions [1], Theory of Isobaric Analogue Resonances [2], etc.).
Usually this system is solved by numerical approximation methods (a Runge-Kutta
method, for example). A numerical resolution of a system of N equations requires
N numerical integrations of the system with N different initial conditions (the
complete solution being a linear combination of these N numerical integrations),
so that the difficulties on numerical evaluation of the solution increase with the
number of the equations [3].

Instead of a numerical resolution of the system it is preferable to use a power
series method (exactly as in theory of some special functions) because the numerical
evaluation of the solution and its derivative is reduced to calculating some recur-
rence relations. This method is faster than a Runge-Kutta method [4]. On the
other hand this method gives analytical expresions for the solution and its derivative
and, probably, it permits the comparative study of different approximations of the
Channel Coupling Theory, as the Optical Model for the elastic scattering and
D.W.B.A. for the inelastic scattering.

Recently, J. Chen proposed [5] a power series method in order to solve a system
of coupled Schridinger equations. This method relies on the Gantmacher’s
method [6] for solving a first order matrix equation. But in Chen’s variant the
mathematical conditions imposed on the potential make it inapplicable in many
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cases (e.g. for a nonspherical potential in Channel Coupling Theory). A generaliza-
tion is presented in this article which leads to four analytical variants as the solu-
tions of coupled Schridinger equations. One of the variants (IV) coincides with
that proposed in the work [5]. In another variant (IIT) the mathematical conditions
imposed on the potential is less restrictive than in Chen’s variant so that it becomes
applicable in all cases of Channel Coupling Theory, for example. As examples of
applications of this variant we deduce Channel Coupling radial wave functions,
Optical Model wave functions and regular Coulomb functions [7].

2. THE SOLVING OF THE SYSTEM OF COUPLED EQUATIONS

We consider a system of equations of the form
A2 X;/dx? = i Ve = VaXs + Y, VX )
k=1 ki
V,; has a singularity at origin
Vie = viys + Dx® + Bi/x + V5.
In matrix notation
X = X, V=1Vl
the system is written
d*X]dx? =V - X.

By the transformation

| dX/dx 2 0 ppe _ n
r=|"0 A= ol 1=usal,
the system takes the form
dY|dx = A - Y. )

Since, at the origin X(0) = 0 and (dX/dx),—, = C we find ¥(0) = | & |. Making the
nonsingular transformation B(x)

hp=B-Y 3
so that in the matrix equation for  to have only one regular singularity for x = 0
difijdx = P*- Y. 4

It gives
P*B = dBldx 4 B - 4. ®)
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This relation is satisfied by three matrices P*, B and 4. Since P* has not yet been
fixed, B is still arbitrary

0 By
B = 6
By B | ©®
with

Byy = By = [I(b;x™) S5 || b, = CQnStam)

\

BB = C = |

(Z Ci;'xj) 8.k (¢;; = constant)
i
The inverse of the matrix B is

B, B3
—1 i1 1
B By O

o~
3
N’

where
B, = —B;'B,, B} = —B]} - C

22712 12

The quantities b, , ¢;;, m; and j are chosen so that P* should have a singularity
of the form 1/x

P*:P_l/x_:T‘P

P, 0 P, P ®
— |11 | 12
Pa=lo pl F=1p, Py
The different choices lead to four variants
L b=1; j=0,-1; ¢;p= /gi/z'}’z‘; m; =0 Cii = Y5
I b=1; j=0,-1; ¢jp= lgi/zyi; B = Y Cia=Y;
OL b= 1; j=0,~1; cio = ~B;/20y; + 1); m; = 0; cia=~(y:+ 1)

IV, by=1; j=0,-1; c;o = _ﬂi/z(')/i 4 1); my = _('}’i + 1) e =~y + 1}
It results

L Biyg = By =1
By, = H(Bi/z'yi + yilx) Sl

Bn = _Bzz

Py = —[lyibill (n<y2< <)
P,=—-P

Py=— “(Bi/zyi) i |

Py =1
(Po)is = Vi — Bi2/47i2
(P21)2':i = Vi (1 # f)
Py = —P 13
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IT. By, = By = [[(X”%) 84|
Boa = [((Bif2y:) X7 4 yix™ ") 83|

By = — ((B:i/2ys) 7" + yix™ ) 8|l
Pl — 0

P, = H(Z'J’i) i |l n < Yo Kt Vn)
Py = — ||(13i/2’}’i) it I

P12 = I

(P 21)ii =V; - ﬁi2/4'}’i2

(Pa)iy = Vipx"™ @£
P 22 = —P 11

III. B12 - le - I

By = — [[(Bi/2(y: + 1) + (yi -+ D)/x) 0yl
By, = —By,

Py=y;-+ 1 S |l (1 < ye < <)
Py, = —P,

Py = [(Bi/2(y: + 1)) du |l

Py =1

(P, 21)7Ii = V; — ﬁi2/4('yi + 1)
(P21)ij = Vi (i * J)
P 22 = —P 11

Iv. B,y = By == H(x_(yiﬂ)) Sir |l

By = — [((B/20y: + 1) x4 (y; + 1) x ") 5|
By, = “((31/2(% 4+ 1)) X7 (v: + D x™) 8wl

P]_ - O

Py = — || 2(y; + 1) 85| <y < <)

Py = H(Igz/z(')’z + 1)) il

P,=1

(Pon)es = Vi — B&4(y; -+ 1)
(Po)es = Vix™% (i£))
P 29 = —P 11

This variant coincides with that from the work [5]. The first two variants require
y: 7 0 and the last two y; == —1. If y, =0 or y, = —1 then y(y; + 1)/x?
disappears. Then, the equation (4) becomes

dipjdx = (P/x + P)¢s ©
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In order to solve this equation by the method of Gantmacher it is necessary to
make the transformation P_; 5 A so that
dipldx = (P_y/x + P) — dPldx = (A/x + Q)P {10}
and the characteristic values of A should satisfy
MZAZ 2N 2 A = 2 A (11

(In the four variants we have accepted such an order of the equations in the system
so that y; yy < - <)
By the S transformation

> @ = Sy
P_l—)A:SP_]_S—l
P—II— SPS1
N0 Aner 9
P T e R
2 0 /\ni 0 Dan |
we find, in the four variants
I
0 1
0T 10 I _|
5*101’ S “‘T 0p T:h 0
Y | 0 —Y1 . U _
Ay = b A= " ’ H:L ?Pn :';32?%
0 Y1 0 ~Ya v
il
10 1 4|0 I 1
S=17 ol ST=11 o ST=5,
Yu . 0 . .
4y = N R =] 7P Pal
0 Y1 w
1L
17T 0 T 0 1
$=1o Il’ St=1% 1p =7
Yn+1 0 “(71_}“3) l
Al—v 5 Ag': ‘., s
0 y + 1 —(yn + Di
g |TPul T

PuT  —Pyl
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— 10 -1
~,0 Il §7 =15
—2(yy + 1) 0
_ _ o, . p_ Py I
—0’ /12— ' ’ =F= P21 _Pn
0 —2(y, + 1)

Now considering the condition (11), the system (10) is solved by the Gantmacher
method [6]. It is assumed that I7 could be expanded into a power series

IT=% Ilxt
t=0
This means that
P = Z P txt
=0

In all our variants, Py, , Py, and Py, satisfy this condition. In order to

realise the same condition in the case of P, matrix it is necessary that

oD

V¢ = Z Vitxt

t=0
and
(a) Vi = Z Vita'xt

t=0
in the cases I and III, and
(b) Vi = Z Vfixt

: t=max|yi—yj]

in the cases II and IV.

Usually the potentials V;; used in the Channel Coupling formalism [1, 2]
satisfy (a) but sometimes not (b). This makes Chen’s variant inapplicable
in many cases of coupled Schrddinger equations.

With

D(x) = G(x) I'(x)

when

G(x) = I 4 Gyx + Gyx? 4+ -+ = a convergent series

12)

(13)
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the equation (10) becomes

dljdx = (Ajx + Q) - I (14)
0 = ¥, 0u (15)

G and Q can be chosen arbitrarily, subject to the constraints (13) and (15} and
the relation (16).

=1
tG, + Gy, A] = z [HsGt—s—l — Gy o104l (16)

5=0

It is convenient to write the G, , I1,, O, and 4 in the form

Go=g?) =IO Q=421 A=|A851 (7

so that, (16) becomes
gl — = W] = 2 (T ™ — gy (18)
Ifr = A — A, gi is chosen 0 and we obtain

gV = IEY 4 0T, g, q)

3£ A — A, gifV is chosen 0 and it gives

g = ISP + F2U1, g, VIt — N — W)
where

t—2
T, g, q) = Y {IIPglk ™ — gl Vg,
8=

By replacing ¢ by ¢ -+ 1 these equations can be 1terated to definie g® and g for all
values of ¢. Then, Q takes the form

0 gy

0(x) = .
0 0
where m; = whole numbers A} =m+0;,0 <o, <1). With g(1) = U,

we find
Qx) = ¥M(UJx) x™

581/4/1-4
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where
M=|md;l, D=lodyl, A=M+D.
Then the system (14) becomes
dlldx = [A]x + xM(U[x) x M) - I’
Since the multiplicative Volterra derivative is defined [6] by
D,I" = (dl'ydx) - '

(19) takes the form
DI = Afx + xM{Ulx) x™M

In fact, one can show that
Alx ++ xM(Ulx) x M = D (xMxU+a-M)

and then following solution results

I = xMyUta-M . (', C = { g‘ = constant matrix
2

This implies that the solution of the system is
Y = BIS-IGI" = B-i§1GxMxU+da—M . ('

If the condition ¥(0) = | § | is imposed we find for the four cases

1
Y = dX|dx = (B2 TGy, + ByyGyy) x™xUstPr - ¢y ‘
XTI BEGaa e
IL
Y — dX[dx| _ (BriGy + ByGyy) xMixutPs - Cl}
X Bi'zlG21xM1xU11+D1 ¥oA .
II1. ;
Y = dX/dx - (B TGy +:/B1_21G21) xMiyUu+Dy . Cl’
X B;éTGlllexU11+D1 . C1
Iv.
Y dX/dx _ (B11Gu + BiGy) My Ut Dy, Cl‘
X B GyxMixtuth . ¢

Considering that IT;; == constant diagonal matrix

Hu = H(Hﬁ)z‘j Sia‘ l

(19)

(20)

@n
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one can show that in the cases IIT and 1V, U}, = 0. It gives

t e {t g (
() (H 1)” gz(] 1) z gl t-s-1) s)

In this form we can demonstrate that (gi);; = 0. Indeed, if (§53);; = 05 = 0, 1,...,
t—1) we get gl = fEU(e— A+ X)) =0 and therefore f* = 0 which
implies ¢’ = 0 and g™ = 0, and so on. Thus, the result is Uy = 0. Since
Uy, = 0, the variants III and IV become

1.
Y = ‘dX/dx 1 — ‘(BnTGn + B;zlel) x4 Gy
Blz Tan -Gy
Iv.
Y = }dX/dx} — )(Ban + BiGy) Cy |

BlZ Gll Cl ¢

because in these cases x4 = x% = I. Thus, we obtain the result of the work [5]
as the variant IV.

3. EXAMPLES

As examples of application of this method we deduce Channel Coupling radial
wave functions, Optical Model radial wave functions, regular Coulomb functions
and their derivatives.

a. CHANNEL CoOUPLING RaDIAL WAVE FUNCTIONS

In order to obtain Channel Coupling radial wave functions, we use the variant
II1. The only nonevaluated quantities in this expression are Gy; and G, . These
matrices could be obtained from the recurrence relation (16). With Qy; = @y = 0,
the recurrence relation takes the form

¢-1—A)GH+ G- 4 TP, TG+ TG
-1
'E(t I+ TAT) Gy + G;1A1 y PLTG ™ — PGt i
8=0

and the solution becomes

idX/dx, — '(BuT 1 + G MGy
TGpx™ - C,
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b. OpTicAL. MopEL RADIAL WAVE FUNCTIONS

In the case of the Optical Model, the system of coupled equations is reduced to
one equation, the Optical Model equation. Adequately all matrices are reduced to
one element only. In this case 7 = 1 and the variants III and IV give the same solu-
tion. Indeed

(Buxnrvar = By var
(szl xAl)III var — (B1—21)IV var
and consequently in the notation of the variant III, the solution is written

(BuiGu + Gzl) x4 G

Y= Gux 1. C]_

The recurrence relation is now more simplified

1Gyy = PGt + Gt

(t + 24,) G}, = Z PG — PyGi?
or

n~1
n+1 [ﬁGll + Z v, n—s-l}/(n + 1) -[n+ 2(y + D]

§=0
Gy = (n+ 1) GMI B2ty + D] - G4

¢. REGULAR Couroms FuNcCTION

When ¥, = —1, V,_, = 0 the Optical Model equation passes into the equation
for the motion in the Coulomb field, and consequently the solution of the Optical
Model equation becomes the regular Coulomb function. The above relations take
the form

Gyt = [BGT — Gi '/ + Din + 2(y + D]

The recurrence relation is identical with the formula (15) from the work [7], and
regular Coulomb function can be written

@0
y+1 | +1 L)
F, = Cx Gy, = Cx¥ > Gpx

=0
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The derivative of the regular Coulomb function is

Fl=Cx" Y (n+y+ 1) Giyx»

n=0

These relations are the formulas (22) and (23) in the work [7].

The Coulomb functions are obtained usually (e.g., the work [7) by very
complicated procedures. The advantage of the above method consists in its
simplicity.
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